ホーム
今すぐ使ってみましょう。
私のアカウント
メディア
3Dシーン
レッスン
ツール
ビデオ
製品
今すぐ使ってみましょう。
検索
ヘルプ
ログイン
メール/mozaWeb名
パスワード
ログインしたまま残りたい
ログイン
またはXでログイン
パスワードを忘れましたか?
または
アカウント作成
授業に参加する
今すぐ使ってみましょう。
ホーム
私のアカウント
メディア
3Dシーン
レッスン
ツール
ビデオ
製品
検索
ヘルプ
ログイン
メール/mozaWeb名
パスワード
ログインしたまま残りたい
ログイン
またはXでログイン
パスワードを忘れましたか?
または
アカウント作成
授業に参加する
今すぐ使ってみましょう。
ヘルプ
ブログ
時間労働
?main.menutop.feedback?
検索
検索
選択ページが多すぎる
基準
A-LEVEL Physics
A-LEVEL Physics
3.1 Measurements and their errors
3.1.1 Use of SI units and their prefixes
3.1.2 Limitation of physical measurements
3.2 Particles and radiation
3.2.1 Particles
3.2.1.2 Stable and unstable nuclei
3.2.1.3 Particles antiparticles and photons
3.2.1.4 Particle interactions
3.2.1.5 Classification of particles
3.2.1.6 Quarks and antiquarks
3.2.1.7 Applications of conservation laws
3.2.2 Electromagnetic radiation and quantum phenomena
3.2.2.2 Collisions of electrons with atoms
3.2.2.3 Energy levels and photon emission
3.2.2.4 Wave-particle duality
3.3 Waves
3.3.1 Progressive and stationary waves
3.3.1.2 Longitudinal and transverse waves
3.3.1.3 Principle of superposition of waves
3.3.2 Refraction diffraction and interference
3.3.2.2 Diffraction
3.3.2.3 Refraction at a plane surface
3.4 Mechanics and materials
3.4.1 Force energy and momentum
3.4.1.2 Moments
3.4.1.3 Motion along a straight line
3.4.1.4 Projectile motion
3.4.1.5 Newton's laws of motion
3.4.1.6 Momentum
3.4.1.7 Work energy and power
3.4.1.8 Conservation of energy
3.4.2 Materials
3.4.2.1 Bulk properties of solids
3.4.2.2 The Young modulus
3.5 Electricity
3.5.1.1 Basics of electricity
3.5.1.2 Current-voltage characteristics
3.5.1.3 Resistivity
3.5.1.4 Circuits
3.5.1.5 Potential divider
3.5.1.6 Electromotive force and internal resistance
3.6 Further mechanics and thermal physics
3.6.1.1 Circular motion
3.6.1.2 Simple harmonic motion
3.6.1.3 Simple harmonic systems
3.6.1.4 Forced vibrations and resonance
3.6.2.1 Thermal energy transfer
3.6.2.2 Ideal gases
3.6.2.3 Molecular kinetic theory model
3.7 Fields and their consequences
3.7.1 Fields
3.7.2 Gravitational fields
3.7.2.3 Gravitational potential
3.7.2.4 Orbits of planets and satellites
3.7.3.1 Coulomb's law
3.7.3.2 Electric field strength
3.7.3.3 Electric potential
3.7.4.1 Capacitance
3.7.4.2 Parallel plate capacitor
3.7.4.3 Energy stored by a capacitor
3.7.4.4 Capacitor charge and discharge
3.7.5.1 Magnetic flux density
3.7.5.2 Moving charges in a magnetic field
3.7.5.3 Magnetic flux and flux linkage
3.7.5.4 Electromagnetic induction
3.7.5.5 Alternating currents
3.7.5.6 Operation of a transformer
3.8 Nuclear physics
3.8.1 Radioactivity
3.8.1.1 Rutherford scattering
3.8.1.2 α β and γ radiation
3.8.1.3 Radioactive decay
3.8.1.4 Nuclear instability
3.8.1.5 Nuclear radius
3.8.1.6 Mass and energy
3.8.1.7 Induced fission
3.8.1.8 Safety aspects
3.9 Astrophysics
3.9.1 Telescopes
3.9.1.1 Astronomical telescope consisting of two converging lenses
3.9.1.2 Reflecting telescopes
3.9.1.3 Single dish radio telescopes I-R U-V and X-ray telescopes
3.9.1.4 Advantages of large diameter telescopes
3.9.2.2 Absolute magnitude M
3.9.2.3 Classification by temperature black-body radiation
3.9.2.4 Principles of the use of stellar spectral classes
3.9.2.6 Supernovae neutron stars and black holes
3.9.3.1 Doppler effect
3.9.3.2 Hubble's law
3.9.3.4 Detection of exoplanets
3.10.1 Physics of the eye
3.10.1.1 Physics of vision
3.10.1.2 Defects of vision and their correction using lenses
3.10.2 Physics of the ear
3.10.2.1 Ear as a sound detection system
3.10.2.2 Sensitivity and frequency response
3.10.3 Biological measurement
3.10.3.1 Simple ECG machines and the normal ECG waveform
3.10.4 Non-ionising imaging
3.10.4.1 Ultrasound imaging
3.10.4.2 Fibre optics and endoscopy
3.10.5 X-ray imaging
3.10.5.1 The physics of diagnostic X-rays
3.10.5.2 Image detection and enhancement
3.10.5.4 CT scanner
3.10.6 Radionuclide imaging and therapy
3.10.6.1 Imaging techniques
3.10.6.2 Half-life
3.10.6.4 Use of high-energy X-rays
3.10.6.5 Use of radioactive implants
3.10.6.6 Imaging comparisons
3.11 Engineering physics
3.11.1 Rotational dynamics
3.11.1.1 Concept of moment of inertia
3.11.1.2 Rotational kinetic energy
3.11.1.3 Rotational motion
3.11.1.4 Torque and angular acceleration
3.11.1.6 Work and power
3.11.2 Thermodynamics and engines
3.11.2.1 First law of thermodynamics
3.11.2.2 Non-flow processes
3.11.2.3 The p-V diagram
3.11.2.4 Engine cycles
3.11.2.5 Second Law and engines
3.11.2.6 Reversed heat engines
3.12 Turning points in physics
3.12.1 The discovery of the electron
3.12.1.1 Cathode rays
3.12.1.3 Specific charge of the electron
3.12.1.4 Principle of Millikan's determination of the electronic charge
3.12.2 Thermionic emission of electrons
3.12.2.1 Newton's corpuscular theory of light
3.12.2.2 Significance of Young's double slits experiment
3.12.2.3 Electromagnetic waves
3.12.2.4 The discovery of photoelectricity
3.12.2.5 Wave-particle duality
3.12.2.6 Electron microscopes
3.12.3 Specific charge of the electron
3.12.3.1 The Michelson-Morley experiment
3.12.3.2 Einstein's theory of special relativity
3.12.3.3 Time dilation
3.12.3.4 Length contraction
3.12.3.5 Mass and energy
3.13 Electronics
3.13.3 Analogue signal processing
3.13.3.1 LC resonance filters
3.13.5 Digital signal processing
3.13.5.3 Astables
3.13.6 Data communication systems
3.13.6.2 Transmission media
基準
A-LEVEL Physics
A-LEVEL Physics
3.1 Measurements and their errors
3.1.1 Use of SI units and their prefixes
3.1.2 Limitation of physical measurements
3.2 Particles and radiation
3.2.1 Particles
3.2.1.2 Stable and unstable nuclei
3.2.1.3 Particles antiparticles and photons
3.2.1.4 Particle interactions
3.2.1.5 Classification of particles
3.2.1.6 Quarks and antiquarks
3.2.1.7 Applications of conservation laws
3.2.2 Electromagnetic radiation and quantum phenomena
3.2.2.2 Collisions of electrons with atoms
3.2.2.3 Energy levels and photon emission
3.2.2.4 Wave-particle duality
3.3 Waves
3.3.1 Progressive and stationary waves
3.3.1.2 Longitudinal and transverse waves
3.3.1.3 Principle of superposition of waves
3.3.2 Refraction diffraction and interference
3.3.2.2 Diffraction
3.3.2.3 Refraction at a plane surface
3.4 Mechanics and materials
3.4.1 Force energy and momentum
3.4.1.2 Moments
3.4.1.3 Motion along a straight line
3.4.1.4 Projectile motion
3.4.1.5 Newton's laws of motion
3.4.1.6 Momentum
3.4.1.7 Work energy and power
3.4.1.8 Conservation of energy
3.4.2 Materials
3.4.2.1 Bulk properties of solids
3.4.2.2 The Young modulus
3.5 Electricity
3.5.1.1 Basics of electricity
3.5.1.2 Current-voltage characteristics
3.5.1.3 Resistivity
3.5.1.4 Circuits
3.5.1.5 Potential divider
3.5.1.6 Electromotive force and internal resistance
3.6 Further mechanics and thermal physics
3.6.1.1 Circular motion
3.6.1.2 Simple harmonic motion
3.6.1.3 Simple harmonic systems
3.6.1.4 Forced vibrations and resonance
3.6.2.1 Thermal energy transfer
3.6.2.2 Ideal gases
3.6.2.3 Molecular kinetic theory model
3.7 Fields and their consequences
3.7.1 Fields
3.7.2 Gravitational fields
3.7.2.3 Gravitational potential
3.7.2.4 Orbits of planets and satellites
3.7.3.1 Coulomb's law
3.7.3.2 Electric field strength
3.7.3.3 Electric potential
3.7.4.1 Capacitance
3.7.4.2 Parallel plate capacitor
3.7.4.3 Energy stored by a capacitor
3.7.4.4 Capacitor charge and discharge
3.7.5.1 Magnetic flux density
3.7.5.2 Moving charges in a magnetic field
3.7.5.3 Magnetic flux and flux linkage
3.7.5.4 Electromagnetic induction
3.7.5.5 Alternating currents
3.7.5.6 Operation of a transformer
3.8 Nuclear physics
3.8.1 Radioactivity
3.8.1.1 Rutherford scattering
3.8.1.2 α β and γ radiation
3.8.1.3 Radioactive decay
3.8.1.4 Nuclear instability
3.8.1.5 Nuclear radius
3.8.1.6 Mass and energy
3.8.1.7 Induced fission
3.8.1.8 Safety aspects
3.9 Astrophysics
3.9.1 Telescopes
3.9.1.1 Astronomical telescope consisting of two converging lenses
3.9.1.2 Reflecting telescopes
3.9.1.3 Single dish radio telescopes I-R U-V and X-ray telescopes
3.9.1.4 Advantages of large diameter telescopes
3.9.2.2 Absolute magnitude M
3.9.2.3 Classification by temperature black-body radiation
3.9.2.4 Principles of the use of stellar spectral classes
3.9.2.6 Supernovae neutron stars and black holes
3.9.3.1 Doppler effect
3.9.3.2 Hubble's law
3.9.3.4 Detection of exoplanets
3.10.1 Physics of the eye
3.10.1.1 Physics of vision
3.10.1.2 Defects of vision and their correction using lenses
3.10.2 Physics of the ear
3.10.2.1 Ear as a sound detection system
3.10.2.2 Sensitivity and frequency response
3.10.3 Biological measurement
3.10.3.1 Simple ECG machines and the normal ECG waveform
3.10.4 Non-ionising imaging
3.10.4.1 Ultrasound imaging
3.10.4.2 Fibre optics and endoscopy
3.10.5 X-ray imaging
3.10.5.1 The physics of diagnostic X-rays
3.10.5.2 Image detection and enhancement
3.10.5.4 CT scanner
3.10.6 Radionuclide imaging and therapy
3.10.6.1 Imaging techniques
3.10.6.2 Half-life
3.10.6.4 Use of high-energy X-rays
3.10.6.5 Use of radioactive implants
3.10.6.6 Imaging comparisons
3.11 Engineering physics
3.11.1 Rotational dynamics
3.11.1.1 Concept of moment of inertia
3.11.1.2 Rotational kinetic energy
3.11.1.3 Rotational motion
3.11.1.4 Torque and angular acceleration
3.11.1.6 Work and power
3.11.2 Thermodynamics and engines
3.11.2.1 First law of thermodynamics
3.11.2.2 Non-flow processes
3.11.2.3 The p-V diagram
3.11.2.4 Engine cycles
3.11.2.5 Second Law and engines
3.11.2.6 Reversed heat engines
3.12 Turning points in physics
3.12.1 The discovery of the electron
3.12.1.1 Cathode rays
3.12.1.3 Specific charge of the electron
3.12.1.4 Principle of Millikan's determination of the electronic charge
3.12.2 Thermionic emission of electrons
3.12.2.1 Newton's corpuscular theory of light
3.12.2.2 Significance of Young's double slits experiment
3.12.2.3 Electromagnetic waves
3.12.2.4 The discovery of photoelectricity
3.12.2.5 Wave-particle duality
3.12.2.6 Electron microscopes
3.12.3 Specific charge of the electron
3.12.3.1 The Michelson-Morley experiment
3.12.3.2 Einstein's theory of special relativity
3.12.3.3 Time dilation
3.12.3.4 Length contraction
3.12.3.5 Mass and energy
3.13 Electronics
3.13.3 Analogue signal processing
3.13.3.1 LC resonance filters
3.13.5 Digital signal processing
3.13.5.3 Astables
3.13.6 Data communication systems
3.13.6.2 Transmission media
3.8.1.1 Rutherford scattering
3.8.1.2 α β and γ radiation
3.8.1.3 Radioactive decay
3.8.1.4 Nuclear instability
3.8.1.5 Nuclear radius
3.8.1.6 Mass and energy
3.8.1.7 Induced fission
3.8.1.8 Safety aspects
-
あなたに最高のオンライン体験を提供するために、弊社のウェブサイトはクッキーを使用しています。
詳細な情報
OK
もっと